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Abstract A solution is derived for the non-stationary heat-conduction problem involving a thermosensitive sphere
and space with a spherical cavity under convective radial heat exchange with the environment. The influence of the
material thermosensitivity on the temperature distribution and the stresses caused by it is analyzed for the cases
when force loadings exist and when they are absent on the surface of the bodies considered.

Keywords Complex heat exchange · Space with a spherical cavity · Sphere · Thermoelasticity ·
Thermosensitivity of material

1 Introduction

Modern high requirements in engineering regarding the determination of the thermal stress state of design elements,
operating at large temperature drops, can be satisfied only on the basis of mathematical models considering the
temperature dependence of the thermal and mechanical characteristics of the material. Such models involve nonlin-
ear boundary-value problems of mathematical physics. The corresponding models describing the stress–strain state
make use of systems of differential equations with variable coefficients. Basically, numerical methods are used to
construct the solutions to these problems. Reviews and analyses of mathematical methods for the solution of such
heat-conduction and thermoelasticity problems are given, e.g., in [1–5].

Nowinski [6] considered the thermoelasticity problem for an incompressible isotropic sphere, and Parida and
Das [7] analyzed the thermoelastic state of an incompressible inhomogeneous sphere in a periodic temperature field.
Noda has given in [8] a general solution for the thermoelasticity problem for a sphere with a temperature-dependent
coefficient of linear expansion only. For the temperature-dependent shear modulus also, such a problem was solved
by a perturbation method. Stanišić and McKinley [9] studied the steady thermal stresses of an isotropic sphere
for a temperature-independent Poisson ratio; Nyuko et al. [10] considered these problems for a composite hollow
sphere. Kolyano and Mahorkin [11] and Mahorkin [12] constructed solutions for centrally symmetric thermoelas-
ticity problems for thermosensitive continuous and hollow spheres, approximating the temperature dependence of
the mechanical characteristics by unit functions. An analytical solution for the spherically symmetric thermal and
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mechanical stress in a thick hollow sphere made of functionally graded materials is presented in [13]. The material
properties are assumed to be graded along the radial direction according to exponential functions in the radial
direction.

Nowinski [14] determined the temperature field, and stress–strain state caused by it, for a thermosensitive space
with a spherical cavity in the case when a constant temperature was prescribed on the cavity surface and the Poisson
ratio was assumed to be constant.

In [15,16] the non-stationary temperature fields in a thermosensitive sphere and space with a spherical cavity
with convective heat exchange with the environment were determined, and the influence of the material thermo-
sensitivity on the temperature distribution, and stresses caused by it, for the case of an external load-free bounding
surface was analyzed. Here, using the analytical-numerical procedure proposed in [17], we construct solutions
for the analogous heat-conduction problems for a thermosensitive sphere and space with a spherical cavity under
complex heat exchange with the environment; the thermoelastic state will also be determined. The temperature
values, obtained on the basis of the given procedure, have been compared with those found by a purely numerical
method under convective, radial, and convective-radial heat exchange. The influence of temperature dependence of
the material characteristics on the value and character of the temperature distribution and the resulting stresses is
studied for the cases of external load-free surfaces of bodies subject to constant-pressure conditions.

2 Statement of the heat-conduction problem for a sphere

Consider the problem of determining the non-stationary temperature field t and the stress–strain state (caused by
it) in a sphere of radius r0, the thermomechanical characteristics of which are functions of temperature. The sphere
has a uniform temperature distribution tp and its surface r = r0 is under constant pressure p0. At an initial moment
τ = 0 the sphere begins to heat through the surface r = r0 by convective-radial heat exchange with the environment,
the temperature of which is equal to tc.

In this case the temperature field in the sphere is determined from the nonlinear heat-conduction equation
[2, p. 91], [18, Chap. 1, Sect. 6]
1

r2

∂

∂r

(
r2λt (t)

∂t

∂r

)
= cv(t)

∂t

∂τ
, (1)

subject to the boundary and initial conditions[
λt (t)

∂t

∂r
+ α(t − tc)+ σε(t4 − t4c )

]
r=r0

= 0, t |r=0 < +∞,
∂t

∂r

∣∣∣∣
r=0

= 0, (2)

t |τ=0 = tp, (3)

where α is the heat-transfer coefficient through the surface r = r0; cν(t), λt (t) are the temperature-dependent
volumetric heat capacity and heat-conduction factor of the sphere material, respectively; σ is the Stefan–Boltzmann
constant; ε is the degree of blackness.

Let t0 be a reference temperature and the sphere radius r0 be a characteristic size; then introduce the dimen-
sionless temperature T = t/t0, the coordinate ρ = r/r0 and present the characteristics of the sphere material in
the form χ(t) = χ0χ

∗(T ). Here values with subscript zero have corresponding dimensions, and the values with
an asterisk are functions of the dimensionless temperature, where χ(tp) = χ0, χ∗(tp) = 1 (Tp = tp/t0). Then the
problem (1)–(3) takes the form:
1

ρ2

∂

∂ρ

(
ρ2λ∗

t (T )
∂T

∂ρ

)
= c∗ν(T )

∂T

∂Fo
, (4)

[
λ∗
t (T )

∂T

∂ρ
+ Bi(T − Tc)+ Sk(T 4 − T 4

c )

]
ρ=1

= 0, T |ρ=0 < +∞,
∂T

∂ρ

∣∣∣∣
ρ=0

= 0, (5)

T |Fo=0 = Tp. (6)

Here Tc = tc/t0, Bi = αr0/λt0, Sk = σεt30 r0/λt0, Fo = a0τ/r
2
0 , a0 = λt0/cν0.
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Thermoelastic state of a thermosensitive sphere and space 359

3 Construction of an analytical solution to the heat-conduction problem

Let us apply the Kirchhoff transform to the nonlinear problem (4–6):

θ =
∫ T

Tp

λ∗
t (T )dT . (7)

As a result, we obtain the following boundary-value problem for the variable θ(Fo, ρ),

∂2(ρθ)

∂ρ2 = 1

a∗(θ)
∂(ρθ)

∂Fo
, (8)

[
∂θ

∂ρ
+ Bi(T (θ)− Tc)+ Sk(T 4(θ)− T 4

c )

]
ρ=1

= 0, θ |ρ=0 < +∞,
∂θ

∂ρ

∣∣∣∣
ρ=0

= 0, (9)

θ |Fo=0 = 0. (10)

Here T (θ) is an expression for the dimensionless temperature in terms of the Kirchhoff variable θ , which is
found from the integral equation (7) for a particular dependence of the heat-conduction factor on the temperature,
a∗(θ) = λ∗

t [T (θ)]/c∗ν [T (θ)].
To find the solution of the boundary-value problem for the variable θ , (8–10), we use the method of successive

approximations [17]. As themth (m = 1, 2, . . .) approximation of the solution to the problem we take the analytical
solution of the following linear problem:

∂2(ρθm)

∂ρ2 = ∂(ρθm)

∂Fom
, (11)

[
∂θm

∂ρ
+ Bim(θm − θc)

]
ρ=1

= 0, θm|ρ=0 < +∞,
∂θm

∂ρ

∣∣∣∣
ρ=0

= 0, (12)

θm|Fom=0 = 0, (13)

where θc = ∫ Tc
Tp
λ∗
t (T )dT , Fo1 = Fo, Bi1 = Bi, Fom = a∗(θm−1(Fo∗, 1))Fo, Bim = [θm−1(Fo∗, 1) − θc]−1 ×

{Bi[T (θm−1(Fo∗, 1))−Tc]+Sk[(T (θm−1(Fo∗, 1)))4−T 4
c ]}, (m ≥ 2); Fo∗ is the moment for which the temperature

is calculated.
It may be noted that the condition |θm − θm−1| < ε (where ε is the prescribed numerical accuracy) is the con-

vergence criterion of the iteration process. Although convergence of the proposed variant of the iteration process is
not proved theoretically, it is confirmed by numeral experiments and comparison of the solutions found on its basis
with solutions obtained by an entirely numerical method. On the other hand, it is not difficult to see that, when the
number of iterations increases, θm differs only sligthtly (on ε) from θm−1 and the first condition (12) becomes a
nonlinear condition (the first condition (9)), which corresponds to the exact statement of the problem. Thus, the
first iteration takes into account only the convective heat-transfer constituent, which allows to obtain the analytical
solution of the corresponding problem.

To find the solution of the problem (11–13), we apply the Laplace integral transform by the variable Fom [19,20].
As a result we obtain a boundary-value problem for the transform of the mth Kirchhoff approximation variable:

d2(ρθ̃m)

dρ2 − sρθ̃m = 0, (14)

[
dθ̃m
dρ

+ Bim

(
θ̃m − θc

s

)]
ρ=1

= 0, θ̃m

∣∣∣
ρ=0

< +∞,
∂θ̃m

∂ρ

∣∣∣∣∣
ρ=0

= 0, (15)

where θ̃m = ∫ ∞
0 θme−sFomdFom; s is the Laplace transform parameter.
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From the boundary-value problem (14–15) we find the following Laplace transform of the Kirchhoff variable θ̃m

θ̃m = 1

ρ

(
φ(s)

sϕ(s)

)
, (16)

where φ(s) = Bimθc
sin h

√
sρ√
s

, ϕ(s) = cos h
√
s + (Bim − 1) sin h

√
s√

s
.

Since the solution (16) is a relation of generalized polynomials with respect to the parameter s, the polynomial
of the denominator being such that it does not contain a free term, then for the Laplace inverse transform we can
use the expansion theorem [4, pp. 490–496]. The denominator has a simple root s = 0 and an infinite number of
simple roots sn = −µ2

nm(µnm = i
√
s), where µnm are the roots of characteristic equation

µ cotµ = 1 − Bim (17)

obtained from the equation ϕ(s) = 0.
Taking into account the above, we find

θm = θc

[
1 −

∞∑
n=1

Anm
sin(µnmρ)

µnmρ
e−µ2

nmFom

]
, where Anm = 2(sinµnm − µnm cosµnm)

µnm − sinµnm cosµnm
.

For numerical calculations it is convenient to use an expression forAnm, in which the trigonometrical functions are
expressed in terms of µnm and Bim by the characteristic equation (17) [4, p. 228], namely

Anm = (−1)n+1 2Bim
√
µ2
nm + (Bim − 1)2

µ2
nm + Bi2m − Bim

.

To calculate θm for values of ρ close to zero, we can use the asymptotic expression

θm ≈ θc

[
1 −

∞∑
n=1

Anme−µ2
nmFom

]
.

If, for example, the heat-conduction factor is the linear temperature function λ∗
t (T ) = 1 + k(T − Tp)(k = const),

then the mth temperature approximation in the sphere follows from

Tm = k−1
(√

1 + 2kθm − 1
)

+ Tp.

4 Numerical solution of the heat-conduction problem

For comparison, we solve the boundary-value problem for the Kirchhoff variable, (8–10), by the method of lines,
which involves two operations: spatial discretization and time integration. During spatial discretization the equa-
tion with partial derivatives is transformed into a system of ordinary differential equations, where the time variable
remains continuous [21].

To construct a semi-discrete model of the problem (8–10) we introduce a uniform grid wh = {ρi = ih,

i = 0, . . . , n, h = 1/n} on the segment [0, 1]. We replace the partial derivatives with respect to the variable ρ by
the difference derivatives with the second-order approximation with respect to h. Then functions θi = θ(ρi,Fo)
are approximated by the functions θi(Fo), i = 0, . . . , n, satisfying the following system of ordinary differential
equations

dθi
dFo

= a∗(θi)
h2

{
1

i
[(1 + i)θi+1 − (1 − i)θi−1] − 2θi

}
, i = 1, . . . , n− 1, (18)

where

a∗(θi) = a∗(T (θi)) = λ∗
t (T (θi))/c

∗
v(T (θi)), T (θi) = k−1

(√
1 + 2kθi − 1

)
+ Tp. (19)
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Note that (8) has a singularity at ρ = 0. Using the condition ∂θ
∂ρ

∣∣∣
ρ=0

= 0 and de L’Hôpital rule, we may present

the left part of (8), divided by ρ, i.e. 1
ρ
∂2(ρθ)

∂ρ2 , in the form

lim
ρ→0

[
1

ρ

∂2(ρθ)

∂ρ2

]
= lim
ρ→0

[
∂2θ

∂ρ2 + 2

ρ

∂θ

∂ρ

]
=

[
∂2θ

∂ρ2 + 2
∂2θ

∂ρ2

]
ρ=0

= 3
∂2θ

∂ρ2

∣∣∣∣
ρ=0

. (20)

Utilizing the representation (20) and relation θ−1 = θ1 (it follows from condition ∂θ
∂ρ

∣∣∣
ρ=0

= 0, θ1−θ−1
2h = 0), we

obtain an ordinary differential equation in the sphere center,

dθ0

dFo
= a∗(θn)

h2

{
1

n

[
(1 + n)θn+1 − (1 − n)θn−1

] − 2θn

}
,

where θn+1 is determined from the boundary condition (9), replacing the derivative with respect to the variable ρ

by the central-difference derivative ( ∂θ
∂ρ

∣∣∣
ρ=1

≈ θn+1−θn−1
2h ).

As a result we obtain

θn+1 = 2h[−Bi(T (θn)− Tc)− Sk(T 4(θn)− T 4
c )] + θn−1. (21)

Substituting (21) in (20), we obtain the final form in terms of ordinary differential equations on the sphere surface.
Thus, having realized the difference approximation of the boundary conditions (9) and taking into account the

initial condition (10), we obtain the following semi-discrete model, which is a difference analogue of the bound-
ary-value problem (8)–(10):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dθ0

dFo
= 6a∗(θ0)

h2 (θ1 − θ0),

dθi
dFo

= a∗(θi)
h2

{ 1
i
[(1 + i)θi+1 − (1 − i)θi−1] − 2θi

}
, i = 1, . . . , n− 1,

dθn
dFo

=
{

1

n
[(1 + n){2h[−Bi(Tn − Tc)− Sk(T 4

n − T 4
c )] + θn−1} + 2nθn−1] − 2θn

}
× a∗(θn)

h2 ,

θi(0) = 0,

(22)

The solution to the initial-value problem for a system of ordinary differential equations (22) can be found using
the formulas of backward differentiation (the Hier method with a strip structure of the Jacobi matrix calculated by
numerical differentiation). When the values of the Kirchhoff variable θi are found, the temperature in the sphere is
calculated by (19).

5 Stress–strain state of a sphere

The stress–strain state of a sphere in a centrally symmetric temperature field under constant pressurep on the surface
r = r0, is determined [16] by the dimensionless radial displacement ū = u/r0α0t0, radial σρ = σr/2G0α0t0 and
circumferential σϕ = σϕϕ/2G0α0t0 stresses, radial eρ and circumferential eϕ strains (G0 = G(tp), αt0 = αt (tp)),
where

{ū, σρ, σϕ, eρ, eϕ} =
∞∑
k=0

{ūk, σρk, σϕk, eρk, eϕk}, (23)

and the terms of the series (23) are calculated by

ū0 = c0ρ + ρ−2[H(ρ)− 1

3
H3(ρ)] + ρ

3
H0(ρ),

σρ0 = G∗(T )[ν̄(T )c0 − 2ρ−3H(ρ)+ ν̄(T )H0(ρ)/3 + 2ρ−3H3(ρ)/3],
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σϕ0 = G∗(T )[ν̄(T )(c0 +H0(ρ)/3)+ ρ−3(H(ρ)−H3(ρ)/3)−
∗(T )],
eρ0 = ∂ū0

∂ρ
= c0 + ρ−3[−2H(ρ)+ 2

3
H3(ρ)] + ρ

3
H0(ρ)+
∗(T ), eϕ0 = ū0

ρ
,

ūk = ckρ − 1

3

(
ρH

(k−1)
0 (ρ)− ρ−2H

(k−1)
3 (ρ)

)
,

σρk = G∗(T )[ν̄(T )(ck −H
(k−1)
0 (ρ)/3)− 2ρ−3H

(k−1)
3 (ρ)/3],

σϕk = G∗(T )[ν̄(T )(ck −H
(k−1)
0 (ρ)/3)+ ρ−3H

(k−1)
3 (ρ)/3)],

eρk = ∂ūk

∂ρ
= ck − 1

3

(
H
(k−1)
0 (ρ)− 2ρ−3H

(k−1)
3 (ρ)

)
, eϕk = ūk

ρ
, (k ≥ 1), (24)

ν̄(T ) = 1 + ν(T )

1 − 2ν(T )
, H(ρ) =

∫ ρ

0
ξ2
∗(ξ,Fo)dξ, Hm(ρ) =

∫ ρ

0
ξm
̄(ξ,Fo) dξ, 
̄(T ) = ψ(T )
∗(T ),


∗(T ) = 1+ν(T )
1−ν(T )

∫ T

Tp

α∗
t (T )dT , H

(k−1)
m (ρ) =

∫ ρ

0
ξmfk−1(ξ,Fo) dξ, ψ(T ) = ∂

∂ρ

(
log

(
G∗(T ) 1−ν(T )

1−2ν(T )

))
,

fk−1(ρ,Fo) = ψ(T )
(
eρk−1 + 2m(T )eϕk−1

)
, m(T ) = ∂

∂ρ

(
G∗(T ) ν(T )

1 − 2ν(T )

)/ ∂

∂ρ

(
G∗(T ) 1 − ν(T )

1 − 2ν(T )

)
,

c0 = B0

ν̄0
, ck = Bk−1

ν̄0
, B0 = 2H(ρ0)− 1

3
ν̄0H0(ρ0)− 2

3
H3(ρ0)− p0

G∗
0
, ν̄0 = ν̄(T )|ρ=ρ0=1 ,

G∗
0 = G∗(T )

∣∣
ρ=ρ0=1 , Bk−1 = 1

3

(
ν̄0H

(k−1)
0 (ρ0)+ 2H(k−1)

3 (ρ0)
)
.

Details of the derivation of the displacements and stresses in the sphere center and in its vicinity (for small ρ) are
given in [16].

6 Temperature-field determination for a space with a spherical cavity

Now consider a space with a spherical cavity of radius r0, all thermal and mechanical characteristics depending
on temperature. The space has a constant initial temperature tp and from τ = 0 it is exchanging heat with the
environment of constant temperature tc through the cavity surface.

In this case the temperature field is determined from the heat-conduction equation (1) subject to the boundary
condition[
λt (t)

∂t

∂r
− α(t − tc)− σε(t4 − t4c )

]∣∣∣∣
r=r0

= 0, lim
r→∞ t = tp, (25)

and the initial condition (3).
After writing down condition (25) in dimensionless coordinates and for the values introduced above and having

applied the Kirchhoff transform of (7), we obtain[
∂θ

∂ρ
− Bi(T (θ)− Tc)− Sk(T 4(θ)− T 4

c )

]∣∣∣∣
ρ=1

= 0, lim
ρ→∞ θ = 0. (26)

Thus, we have the boundary-value problem (8), (10), (26) to determine the Kirchhoff variable. Its solution is found
by the method of successive approximations where the mth approximation is the solution to Eq. (11) with initial
(13) and boundary conditions:[
∂θm

∂ρ
− Bim(θm − θc)

]∣∣∣∣
ρ=1

= 0, lim
ρ→∞ θm = 0. (27)

It is found with the help of the Laplace integral transform and is of the following form

θm = Bimθr
(1 + Bim)ρ

[
erfc

ρ − 1

2
√

Fom
− e(1+Bim)(ρ−1+(1+Bim)Fom)erfc

(
(1 + Bim)

√
Fom + ρ − 1

2
√

Fom

)]
, (28)

where erfcξ = 1 − erfξ ; erfξ is the probability integral.
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7 Numerical solution of the heat-conduction problem for a space with a spherical cavity

A semi-discrete model of the problem (8), (10), (26), constructed by the integro-interpolation method, is the Cauchy
problem for a system of ordinary differential equations

dθ0

dFo
= 2a∗(θ0)

h

[
1

h
(θ1 − θ0)ρ

2
1
2

− Bi(T (θ0)− Tr)− Sk(T 4(θ0)− T 4
r )

]
,

dθi
dFo

= a∗(θi)
h2(1 + ih)2

[(θi+1 − θi)ρ
2
i+ 1

2
− (θi − θi−1)ρ

2
i− 1

2
], i = 1, . . . , n− 1, θi(0) = 0, (29)

dθn
dFo

= − 2a∗(θn)
h2(1 + nh)2

(θn − θn−1)ρ
2
n− 1

2
.

8 Stress–strain state of a space with a spherical cavity

The stress–strain state of a space with a spherical cavity, that is in a centrally symmetric temperature field under
constant pressure p1 on the surface ρ = 1, will be determined by the dimensionless radial displacement component
ū different from 0, in terms of which the dimensionless radial σρ and circumferential σϕ stresses are expressed:

σρ = Ḡ(T )[(1 − ν(T ))∂ū/∂ρ + 2ν(T )ū/ρ − (1 − ν(T ))
∗(T )],
(30)

σϕ = Ḡ(T )[ν(T )∂ū/∂ρ + ū/ρ − (1 − ν(T ))
∗(T )],
satisfying the equilibrium equation

∂σρ/∂ρ + 2(σρ − σϕ)/ρ = 0, (31)

where Ḡ(T ) = G∗(T )/(1 − 2ν(T )).
Substituting the relation (30) in Eq. (31), we obtain a differential equation for the determination of ū [16]:

∂

∂ρ

(
1

ρ2

∂

∂ρ
(ρ2ū)

)
= ∂
∗

∂ρ
− ψ(T )

(
∂ū

∂ρ
+ 2m(T )

ū

ρ
−
∗(T )

)
, (32)

where

ψ(T ) = ∂

∂ρ

(
log

(
G∗(T ) 1 − ν(T )

1 − 2ν(T )

))
, m(T ) = ∂

∂ρ

(
G∗(T ) ν(T )

1 − 2ν(T )

)/ ∂

∂ρ

(
G∗(T ) 1 − ν(T )

1 − 2ν(T )

)
.

The solution to Eq. (32) will be constructed by a perturbation method. Contrary to [16], we shall rearrange the
terms in the right part of (32) somewhat differently and along with it we shall consider the following differential
equation with variable coefficients

∂

∂ρ

(
1

ρ2

∂

∂ρ
(ρ2ū)

)
= ∂
∗(T )

∂ρ
+ ψ(T )
∗(T )− εψ(T )

(
∂ū

∂ρ
+ 2m(T )

ū

ρ

)
, (33)

which coincides with (32) when ε = 1. The solution to Eq. (33) is given in the form of an expansion in powers of
the parameter ε:

ū =
∞∑
k=0

εkūk(ρ,Fo). (34)

Substituting (34) in Eq. (33) and equating terms having equal powers ε, we obtain a differential equation relative
to the zero component ū0:

∂

∂ρ

(
1

ρ2

∂

∂ρ
(ρ2ū0)

)
= ∂
∗(T )

∂ρ
+ ψ(T )
∗(T ) (35)
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and a recursion sequence of differential equations relative to the kth ūk (k ≥ 1) component

∂

∂ρ

(
1

ρ2

∂

∂ρ
(ρ2ūk)

)
= −fk−1(ρ,Fo), (36)

of displacement ū, where fk−1(ρ,Fo) = ψ(T )
(
∂ūk−1
∂ρ

+ 2m(T ) ūk−1
ρ

)
.

Taking into account the above, the solution to Eq. (32) reads

ū =
∞∑
k=0

ūk(ρ,Fo), (37)

where ū0, ūk , are the solutions to (35), (36), which, respectively, are of the form:

ū0 = c10ρ + ρ−2(c20 +H(ρ)−H3(ρ)/3)+ ρH0(ρ)/3, (38)

ūk = c1kρ + ρ−2(c2k +Hk−1
3 (ρ)/3)− ρHk−1

0 (ρ)/3. (39)

Here cik(i = 1, 2) are the integration constants, and H(ρ) = ∫ ρ
1 ξ

2
∗(ξ,Fo)dξ , Hm(ρ) = ∫ ρ
1 ξ

mψ(T )
∗(ξ,Fo)

dξ , H(k−1)
m (ρ) = ∫ ρ

1 ξ
mfk−1(ξ,Fo)dξ .

Taking into account the representation (34), we may calculate the thermal stresses by (23), where the terms of
the corresponding series are of the form

σρ0 = G∗(T )[ν̄(T )(c10 +H0(ρ)/3)− 2ρ−3(c20 +H(ρ)−H3(ρ)/3)], (40)

σϕ0 = G∗(T )[ν̄(T )(c10 +H0(ρ)/3)+ ρ−3(c20 +H(ρ)−H3(ρ)/3)−
∗(T )], (41)

σρk = G∗(T )[ν̄(T )(c1k −H
(k−1)
0 (ρ)/3)− 2ρ−3(c2k −H

(k−1)
3 (ρ)/3)], (42)

σϕk = G∗(T )[ν̄(T )(c1k −H
(k−1)
0 (ρ)/3)+ ρ−3(c2k +H

(k−1)
3 (ρ)/3)]. (43)

The integration constants cik(i = 1, 2) are determined from the conditions that there is a pressure p̄1 on the cavity
surface ρ = 1 and that the stresses vanish at infinity, i.e.

σρk
∣∣
ρ=ρ1 = −p̄1δ0k, lim

ρ→∞{σρk, σ
k} = 0, (44)

where p̄1 = p1/(2G0αt0t0); δ0k is the Kronecker symbol.
Demanding that the stress components (40)–(43) should satisfy the condition (44), while assuming limρ→∞
∗(T ) =

0, we find:

c10 = −1

3
H0(ρ)|ρ=∞ , c1k = 1

3
Hk−1

0 (ρ)

∣∣∣
ρ=∞ ,

c20 = p̄1

2G∗(T )|ρ=1
+ ν̄(T )|ρ=1 c10

2
, c2k = 1

2
c1k ν̄(T )|ρ=1 .

9 Numerical analysis

Numerical investigations have been carried out for the temperature field and stress–strain state (caused by it) in a
sphere and space with a spherical cavity with characteristics in the temperature range 293–873 K (20–600 ◦C) for
the cases of convective, radial, and convective-radial heat exchange, when there is force loading on their bounding
surfaces and also when this is absent. The thermophysical characteristics vary linearly with temperature, and the
mechanical ones vary according to a quadratic law and are of the form λt (t) = 42.31 − 0.0087t [Ws/(m K)],
c(t) = 403.5608+0.54594t[J/(Kg K)], ρ = 7841 [Kg/m3], αt (t) = 10.6429+0.00724t−3.4102×10−6t2 [1/K],
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Fig. 1 Distribution of the
dimensionless temperature
T versus Fo
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E(t) = (2.17573−0.00052t−4.6271×10−7t2)1011 [Pa], ν(t) = 0.31863+0.00003t+7.126×10−8t2. The temper-
ature of environment tc = 873 K has been taken as a reference temperature, t0 and the initial temperature tp have been
assumed to be equal to 293 K. ThenTc = 1, Tp = 0.34. For the above reference and initial temperatures the represen-
tations of the temperature dependence for the physical and mechanical characteristics in the form χ(t) = χ0χ

∗(T ),
where χ∗(Tp) = 1, are as follows: λt (t) = 39.76(1 − 0.19(T − Tp)), c(t) = 563.52(1 + 0.85(T − Tp)),
αt (t) = 12.47(1+0.37(T −Tp))−0.2(T −Tp)2)×10−6,E(t) = 1.98(1−0.35(T −Tp)−0.18(T −Tp)2)×1011,
ν(t) = 0.33(1 + 0.19(T − Tp)+ 0.16(T − Tp)

2).
The calculations have been carried out for dimensionless values. The discrepancy between the temperature values

of a sphere, obtained using the method of successive approximations and the numerical method, does not exceed
2%.

In Fig. 1 the graphs are given for the temperature change versus time Fo on the surface of the sphere in the cases
of convective (Bi = 0.5, Sk = 0), radial (Bi = 0, Sk = 0.5), and convective-radial (Bi = 0.5, Sk = 0.5) heat
exchange when the material of the sphere is thermosensitive (solid line), non-thermosensitive (material characteris-
tics are equal to the reference valuesχ0−dashed line) and when the temperature dependence of thermal-conductivity
factor is neglected (a∗ = 1 − dotted line).

Figure 2 shows the results of an investigation into the stress–strain state of a sphere under convective-radial
heating (Bi = 0.5, Sk = 0.5) and force loading p = 0.035 on the surface for various values of Fo = 0.3, 0.4, 0.5.
Figure 2a presents graphs of the sphere-radius-displacement distributions, Fig. 2(b,c) presents graphs of radial and
circumferential stresses, Fig. 2(d,e) presents graphs of radial and circumferential strains, respectively.

When time increases, the displacements increase from zero in the sphere center to their maximums on its sur-
face, the level of which is lower for a thermosensitive sphere than for a non-thermosensitive sphere. The maximal
discrepancy between them is 15%. The maximal discrepancy between the distribution of radial and circumferential
strains does not exceed 15% either.

The value of the discrepancy between distributions of components of the stress–strain state in a thermosensitive
and a non-thermosensitive sphere depends on the pressure applied to its surface. As can be seen from the graphs,
these discrepancies are different for different moments when there is pressure.

A calculation of distributions of the dimensionless temperature field T , displacement ū and stress-tensor com-
ponents σρ, σϕ for a space with a spherical cavity has been carried out for convective, radial, and convective-radial
heat exchange (Figs. 3, 4, respectively). Figure 5 illustrates the distribution of displacements and stresses when
there is force loading p̄1 on the cavity surface and also when it is absent for convective-radial heat exchange. The
dashed lines in these figures present the corresponding distributions in the case of non-thermosensitive material,
the characteristics of which are equal to the reference values χ0.
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Fig. 2 Distribution of the components of the stress–strain state in a sphere. (a) Displacements ū, (b) radial stresses σp, (c) circumferential
stresses σϕ , (d) radial strains ep, and (e) circumferential strains eϕ

Fig. 3 Distribution of the
dimensionless temperature
T versus ρ in a space with a
spherical cavity
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Fig. 4 Distributions of components of the stress–strain state for convective, radial, and convective-radial heat exchange. (a) Displace-
ments ū (b) radial stresses σρ and (c) circumferential stresses σϕ

The discrepancy between the temperature values obtained by the method of successive approximations and the
numerical method does not exceed 2%.

From the graphs of Fig. 3, it is seen that by moving away from the cavity along the radius, the temperature
tends to the initial value Tp. The calculations show that the maximal discrepancy between the temperature values
in a thermosensitive and non-thermosensitive space is observed for convective-radial heat exchange and is approx-
imately equal to 2%. The thermophysical characteristics in the given temperature range vary, respectively, λt (t) by
11%, c(t) by 48%.

The components of the displacement vector, ū and the stress tensor, σρ, σϕ , have been calculated by Eqs. (38),
(39), (40–43). The first few terms of the series (23) are important for practical calculations. Numerical investigations
have shown that rearranging the terms in the right part of (32) (a more successful choice of the zero approximation)
improves the convergence of the series (23). Approximately 90–95% of the total values of the displacements and
stresses have given the zero and first approximation out of five approximations found in this case.

The graphs in Fig. 4a show that, in the case of thermosensitive material, the displacement ū assumes a negative
value on the cavity surface and when moving away from it along the radius it changes sign; at approximately
ρ = 1.7 (for Fo = 1) it reaches its maximum and then decreases monotonically. For a non-thermosensitive material
the displacements assume zero values on the cavity surface.

Figure 5a presents the displacement distributions in thermosensitive and non-thermosensitive spaces under con-
vective-radial heating when there is (p̄1 = 0.1) pressure on the surface of a spherical cavity and also when it is
absent (p̄1 = 0). The presence of pressure changes qualitatively and quantitatively the situation concerning the
displacement distribution.

As can be seen from the graphs in Fig. 4b, the radial stresses σρ increase in absolute value when moving away
from the cavity along the radius, reach a maximal value for ρ = 1.5 and then decrease monotonically tending to
zero. The stresses σρ reach their maximum closer (ρ = 1.3) to the cavity surface when there is pressure (Fig. 5b).

The circumferential stresses are maximal in the absolute value on the cavity surface, they decrease monotonically
when moving away from it, changing their value on the opposite one (Fig. 4c). Loading the cavity surface by a
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Fig. 5 Distributions of components of the stress–strain state under force loading p̄1 on the cavity surface in the absence of force loading.
(a) Displacements ū, (b) radial stresses σρ , and (c) circumferential stresses σϕ

pressure p̄1 = 0.1 causes a qualitative and quantitative change of the distribution of the circumferential stresses
(Fig. 5c).

10 Conclusions

The solutions to non-stationary heat-conduction problems for a sphere and space with a spherical cavity, all material
characteristics of which are temperature-dependent, have been constructed. It has been assumed that these bodies
are under convective-radial heat exchange through the bounding surface within a constant-temperature environ-
ment. We have used a method which employs partial linearization of the nonlinear heat-conduction problem by
introducing the Kirchhoff variable with subsequent utilization of the proposed version of the method of successive
approximations. The solutions of the corresponding thermoelasticity problems, when all mechanical characteris-
tics are assumed temperature-dependent, have been constructed by a perturbation method. Using this method, the
corresponding boundary-value problems (with equations containing variable coefficients) have been reduced to a
sequence of boundary-value problems where the equations have constant coefficients. The solutions of the latter
are written in quadratures. A numerical study has been carried out for the influence of material thermosensitivity
on the distribution character and value of the stress–strain state characteristics of the bodies considered when the
bounding surfaces were free or loaded by constant pressure. When solving the nonlinear heat-conduction prob-
lems for complex heat exchange, the numerical investigations show rapid convergence of the method of successive
approximations (their number did not exceed 12). A numerical experiment has also shown rapid convergence of
the perturbation method when solving thermoelasticity problems. The calculated first two terms of the expansion
of the components of the stress–strain state give approximately 90–95% of the total values of the displacements
and stresses. The influence of the temperature dependence of the linear-expansion coefficient is strongest when
calculating the stresses. The difference between stresses in thermosensitive and non-thermosensitive solids depends
also on the value of the given forces.
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Investigations, carried out by the authors, and other work known to them, concerning the determination of
the thermostressed state of thermosensitive solids under complex heating and simultaneous force loading have
been realized mainly for one-dimensional mathematical models. Elaboration of methods for studying of two- and
three-dimensional stress–strain states of thermosensitive solids under conditions of

• convective-radial heat exchange with the surroundings;
• presence of different heat sources in the bulk of the solids;
• force loading on the surfaces of the solid

is of practical interest.
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